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Abstract

Methylene diphenyl diisocyanate (MDI), the most abundantly produced diisocyanate worldwide, is 

among the best recognized chemical causes of occupational asthma. The bulk of synthesized MDI, 

the 4,4’ isomer, has been the focus of most biochemical research to date. The biological reactivity 

of other MDI isomers (2,2’ and 2,4’), present at concentrations approaching 50% in some 

commercial products, remains less clear. We hypothesized 2,2’ and 2,4’ MDI react with 

glutathione (GSH), a major anti-oxidant of the lower airways, similarly to 4,4’ MDI, and that the 

products could be characterized using a combination of LC-UV-MS and MS/MS. Purified 2,2’ and 

2,4’ MDI isomers were mixed with GSH in pH-buffered aqueous phase at 37°C and reaction 

products were analyzed at varying time points. Within minutes, S-linked bis(GSH)-MDI 

conjugates were detectable as the dominant [M+H]+ ion, with an 865.25 m/z and more intense [M

+2H]2+ ions of the same nominal mass. Upon longer reaction, [M+H]+ ions with greater retention 

times and the 558.17 m/z expected for mono(GSH)-MDI reaction products were observed, and 

exhibited MS/MS collision-induced dissociation (CID)-fragmentation patterns consistent with 

cyclized structures. Compared with 4,4’ MDI, 2,2’ and 2,4’ isomers exhibit similar rapid reactivity 

with GSH and formation of bis(GSH)-MDI conjugates, but greater formation of cyclized 

mono(GSH) conjugates following extended reaction times (10 minutes to 2 hours). Further 

translational studies will be required to determine if the present in vitro findings extend to the 

complex lower airway microenvironment in vivo.

Keywords

Methylene Diphenyldiisocyanate (MDI); Isomer; Glutathione; Conjugate; Cyclized

Introduction

Methylene diphenyl diisocyanate (MDI), the most abundantly produced diisocyanate, is 

widely used in many different industries [1–3]. Inhalation of MDI into the lower airways has 

been reported to cause asthma in hypersensitized individuals and animal models, presumably 

due to chemical modification of “self” molecules in a manner that triggers inflammation [4–
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7]. Crude and technical grade preparations of MDI typically contain > 50% of the 4,4’ 

isomer, which been the focus of most biomedical research to date [3,6,8,9]. However, 

contemporary MDI formulations may also contain other (2,4’ and 2,2’) isomers (some with 

concentrations reaching nearly 50%) [3,10–12], whose biological reactivity remains unclear 

(Figure 1).

One self molecule susceptible to diisocyanate reactivity in vitro and in vivo is the unique 

tripeptide, glutathione (GSH), a major anti-oxidant of the lower airways [13–18]. The 4,4’ 

isomer of MDI exhibits preferential binding to free thiols (as present in GSH) vs. NH2 

groups (present on proteins), and rapidly forms S-linked bis and mono(GSH)-MDI 

conjugates [16,19,20]. In vitro, MDI-GSH conjugates are cleaved into their corresponding 

(cys-gly) conjugates by human gamma glutamyl transpeptidase-1 [21], the primary step in 

metabolism along the mercapturic acid pathway [22]. GSH reacts with aliphatic 

hexamethylene diisocyanate vapors in vivo [18], and protects airway cells against exposure 

in vitro [23]. GSH also reacts with aliphatic (2-cyclohexyl-and 2-chloroethyl-) 

monoisocyanate metabolites of anti-cancer drugs (Lomustine and Carmustine) [24].

The biological reactivity of 2,2’ and 2,4’ isomers of MDI, remains relatively unknown, and 

may differ from that of 4,4’ MDI due to intrinsic differences between isomers. Under 

polyurethane manufacturing conditions (80°C, dry toluene, nitrogen blanket), N=C=O in 

MDI’s para vs. ortho is 3.8 −5.6 times more reactive with alcohols [25]; however, the 

influence of N=C=O’s position (para vs. ortho) in 2,2’ and 2,4’ MDI with biological 

molecules remains unknown. This investigation compared 2,2’ and 2,4’ vs. 4,4’ MDI 

isomers’ reactivity with GSH in aqueous phase at 37°C and neutral pH. A combination of 

LC-UV-MS and MS/MS techniques were employed to identify and compare the GSH 

reaction products with the different MDI isomers.

Materials and Methods

Reactivity of different MDI isomers with GSH

Purified 2,2’ MDI (CAS# 2536–05-02/Desmodur 22M), 2,4’ MDI (CAS# 5873–54-1/

Desmodur 24MI) and 4,4’ MDI (CAS# 101–68-8/ Desmodur 44M) were obtained from the 

International Isocyanate Institute (Boonton, New Jersey). Purity was certified by GC-MS 

(98.54%, 99%, and 98.6% for 2,2’, 2,4’ and 4,4’ MDI respectively). Each isomer of MDI 

was initially diluted in extra dry 99.8% acetone (≤ 0.005% water) manufactured by Acros 

Organics (Morris Plains, NJ) to achieve a 10% weight/volume (w/v) stock solustion. MDI 

stock solutions were prepared within minutes of use for each experiment, and further diluted 

100-fold in HPLC grade water buffered to pH 7.4 with 200 mM sodium phosphate (JT 

Baker; Center Valley, PA) containing 20 mM reduced glutathione (GSH) from Sigma-

Aldrich (St. Louis, MO). Reaction conditions were based on prior published studies of GSH 

reactivity with 4,4’-MDI, containing a slight (2.5:1) molar excess of GSH’s reactive SH to 

MDI’s N=C=O groups to drive the reaction forward [19,26].

Reaction solutions were immediately vortexed and then incubated with end-over-end 

rotation (15 rotations/minute) for varying time periods ranging from 1 minute to 2 hours. 

GSH solutions were pre-equilibrated to 37°C and all experiments were performed in a 37°C 
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temperature regulated room. Following varying durations of reactivity, samples were 

immediately filtered, mixed 1:10 with water/0.1% formic acid (to stabilize thiocarbamate 

linkages and prepare for LC-MS), stored at 4°C and analyzed within 2 hours, or stored at 

−80°C. Prior to analysis all samples were microfuged (16,000g) before transfer to LC-MS 

vials. All experiments were repeated on three different days with fresh reagents and included 

control reactions without GSH or MDI [26].

LC-UV-MS and MS/MS analysis of MDI-GSH reaction products

Reaction products of different MDI isomers with GSH were assessed through LC-MS/MS 

using a C18 LC column and electrospray ionization (ESI) in positive mode, with an 

increasing gradient of acetonitrile for elution. Samples were analyzed on an Agilent G6550A 

QTOF system coupled to an Agilent 1290 Infinity LC system, using a rapid resolution HT 

Zorbax Eclipse Plus C18 column (2.1 × 50 mm, 1.8 μm) from Agilent Technologies (Santa 

Clara, CA).

Samples (5 μL) were loaded and eluted over a 5 minutes period starting at time 0 with a 98:2 

ratio of water:acetonitrile, increasing to 85:15 between 0 and 1 minute, 60:40 between 1 and 

3 minutes, 5:95 between 3 and 4 minutes, up to 2:98 by 4.5 minutes and held till 5 minutes. 

All water and acetonitrile solutions contained 0.1% formic acid. Positive electrospray 

ionization (ESI+) was performed using the following parameters: gas temperature-280°C, 

gas flow-11 l/min, nebulizer-40 psig, sheath gas temp-350°C, sheath gas flow-11, 

Vcap-4000V, nozzle voltage-2000 V, fragmentor voltage-175V, skimmer voltage 65V, 

octopole RF peak voltage 750 V. The m/z values of all ions present in the mass spectra were 

corrected against two reference ions (purine, [M +H]+ m/z 112.9856 and 1H, 1H, 3H 

tetra(fluoropropoxy) phosphazene, [M+H]+ m/z 922.0097). The data acquisition range for 

LC-MS was from 110 to 1700 m/z. UV light absorbance (210, 254 nm) coupled to LC-MS 

was captured by diode array detection.

For MS/MS analyses, the collision energy was automatically set using Agilent MassHunter 

Acquisition software according to the formula, slope x (m/z)/100 + offset; with the slope of 

5 and offset of 2.5. MS/MS data were obtained for the 5 most intense ions, in some 

experiments with preference given to species of interest with m/z’s of 865.25, 558.17, 

532.12, 199.12, or 106.06 ± 100 ppm. Data were acquired and analyzed using MassHunter 

Workstation software from Agilent.

Data Analysis

New reaction products were identified by comparison of experimental samples’ total ion 

chromatograms (TICs), base peak chromatograms (BPCs), and chromatograms of ultraviolet 

(UV) light absorbance (at 210, 254 nm) versus control reactions performed without GSH or 

MDI. Extracted ion chromatograms (EICs) for [M+H]+ ions with defined m/z values and 

peak identification were accomplished with MassHunter Software. ChemDraw Professional 

16.0 (PerkinElmer; Branford, CT) was used for chemical structure modelling, based on the 

exact mass of newly formed products (e.g. [M+H]+ ions), and their MS/MS fragmentation 

pattern upon CID.
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Results

Primary reaction product of 2,2’ and 2,4’ MDI isomers with GSH

When purified 2,2’ and 2,4’ MDI isomers were incubated with GSH under at 37°C in 

aqueous phase at pH 7.4, a prominent new product was readily identified by comparing TICs 

of experimental vs. control reactions performed without MDI. Within 1 minute (Figure 2), 

this primary reaction product was distinguishable as an [M+H]+ ion with an 865.25 m/z and 

a more intense [M+2H]2+ ion (433.12 m/z), consistent with that previously described for 

bis(GSH)-MDI products with 4,4’ MDI [21]. The different isomers’ bis(GSH)-MDI reaction 

products had slightly different retention times on the C18 LC column; those comprised of 

2,2’ MDI < 2,4’ MDI < 4,4’ MDI under the reverse phase chromatography conditions 

employed.

MS/MS CID produced fragments of the 865 m/z [M+H]+ ion derived from reaction of 2,2’ 

and 2,4’ MDI with GSH, are shown in figure 3, and support the structures proposed in figure 

4. Daughter ions of the 865.25 m/z [M+H]+ parent ion include a 607 m/z [M+H]+ ion 

characteristic of S,S’-linked bis(GSH)-MDI (See supplemental materials, figure 15). The 

847.24 m/z daughter ion likely results from loss of water (~18 amu) from the 865.25 m/z [M

+H]+ parent ion, while the 790.22 m/z [M+H]+ daughter ion likely results from loss of the 

glycine residue. The 736 m/z daughter ion is consistent with loss of a single γ-glu from 

bis(GSH)-MDI, and the 661.18 m/z daughter ion with fur-ther loss of gly. The 540.16 m/z 
[M+H]+ daughter ion likely results from loss of water and one glutathione moiety from the 

parent 865 m/z [M+H]+ ion. The 429.12 and 483.13 m/z daughter ions are consistent with 

fragmentation of the S-cys linkage of one GSH and subsequent loss of γ-glu or gly from the 

2nd GSH group S-linked to MDI. The prominent 326.097 m/z daughter ion is consistent with 

a fragment con-taining the cysteine group of GSH linked to MDI cleaved between the N-C 

bond of MDI’s other N=C=O group. The dominant 179 m/z and the 233.06 daughter ions 

are expected for the cys-gly and γ-glu-cys fragments from GSH. Daughter ions expected 

from fragmented MDI, of 225.10 and 199.12 m/z, were also observed.

The MS/MS fragmentation pattern of 2,2’ and 2,4’ bis(GSH)-MDI are nearly identical to 

that of bis(GSH)-MDI generated from 4,4’ MDI in prior reports [19] and in head-to-head 

experiments in this study (See Figure 6). Thus, 2,2’ and 2,4’ MDI react rapidly with GSH at 

37°C in pH buffered solution. Their primary reaction products are S-linked bis(GSH)-MDI 

conjugates, similar to those previously described with 4,4’ MDI [16].

Bis(GSH)-MDI formation with different MDI isomers followed by UV light absorbance

The amount of bis(GSH)-MDI reaction products formed over time, with 2,2’, 2,4’ and 4,4’ 

MDI isomers, were measured based on UV light absorbance at two different wavelengths; 

210 nm (generally reflective of peptide bonds) and 254 nm (generally reflective of MDI’s 

ring structures) [25,27,28]. The data demonstrate qualitatively similar (increasing) formation 

of bis(GSH)-MDI conjugates with each of the different MDI isomers within the first 6 

minutes of reaction (Figure 7). Quantitation of reaction rates, however, was not possible as 

extinction coefficients for the different MDI isomers’ bis(GSH) conjugates are unknown and 
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likely differ substantially at different UV light wavelengths, based on studies by Nagy., et al. 
of alcoholic derivatives of 2,4’ vs. 4,4’ MDI [25].

Qualitative differences between MDI isomers reaction products with GSH over extended 
reaction times

LC-UV(A210 nm)-MS analysis of GSH reaction products with MDI following extended 

reaction times (10 minutes to 2 hours) revealed unexpected qualitative differences between 

isomers (Figure 8). Reactions with the 2,4’ and 2,2’ vs. the 4,4’ isomer of MDI resulted in 

greater amounts of 558.17 m/z [M+H]⁺ ions than bis(GSH)-MDI.

Notably 2,2’ MDI resulted in one, while 2,4’ MDI reactions resulted in two, major new 

peaks of 558.17 m/z [M+H]+ ions following 2 hr reactions. MS/MS analyses of the 558.17 

m/z [M+H]+ ions (Figure 9 and Figure 10) are consistent with cyclized mono(GSH)-MDI 

(Figure 11), in which the free thiol (cys side chain) and amino terminus (γ-glu) of GSH bind 

a single MDI, as previously described [19]. MS/MS CID fragments of the 558.17 m/z [M

+H]+ ion include 483.13 m/z and 429.12 m/z daughter ions consistent with loss of gly or γ-

glu, as well as 225.10, 199.12, and 106.07 m/z daughter ions consistent with fragmentation 

of MDI, and the 179 m/z cys-gly fragment of GSH. The fragmentation pattern of the 558 

m/z [M+H]+ ions (from 2,4’ MDI-GSH) with shorter retention times displayed qualitative 

differences compared to those with longer retention times and those derived from 2,2’ MDI 

(Figure 9). Further comparison of MS/MS CID fragmentation spectra for 558 m/z [M+H]+ 

ions generated upon reaction of GSH with 4,4’ vs 2,2’ and 2,4’ MDI are provided in (Figure 

12).

The rationale for bis(GSH)-MDI and cyclized mono(GSH)-MDI products with multiple 

retention times remains unclear, and may represent different conformers of the same 

molecule, or structural differences. Evidence for the presence of S,N’-as well as S,S’-linked 

bis(GSH)-MDI following 2 hr reactions of GSH with 2,2’ MDI is supported by the presence 

of a 380.12 m/z daughter ion (consistent with that expected γ-glu-MDI) upon MS/MS 

analysis of a peak eluting with a longer retention time (Figure 13). Reciprocal conjugation of 

GSH’s NH2 and SH moieties to 2,4’ MDI’s ortho vs. para N=C=O groups explain the 

presence of 558.17 m/z [M+H]+ ions with two distinct retention times most evident 

following 2 hr reactions (Figure 8 and 11).

Discussion

This study utilized LC-UV-MS and MS/MS approaches to provide new information on 

biological reactivity of different MDI isomers, which may be influenced by proximity of 

their N=C=O groups to the molecule’s methylene bridge. The present investigation focused 

on the reactivity of 2,2’ and 2,4’ MDI with GSH, a major anti-oxidant of the lower airways, 

and found marked similarities with that previously described for 4,4’ MDI [16,19,26]. Under 

the present experimental conditions (aqueous phase, pH 7.4, 37°C) 2,2’, 2,4’ and 4,4’ MDI 

form primarily bis(GSH)-MDI conjugates within minutes. However, following longer 

reaction times (≥ 10 minutes), 2,2’ MDI and 2,4’ MDI form greater amounts of 

mono(GSH)-MDI, in a form likely stabilized by cyclization [19]. LC-UV-MS and MS/MS 
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approaches facilitated characterization of the 2,2’ and 2,4’ MDI isomers’ reaction products 

with GSH and comparison with those of 4,4’ MDI.

The initially formed bis(GSH)-MDI conjugates with 2,2’ and 2,4’ MDI have longer 

retention times than GSH (on a C18 column under reverse phase conditions) and are readily 

distinguishable as a dominant new peak in LC-UV chromatograms at 210 and 254 nm. 

These bis(GSH)-MDI reaction products are also readily apparent in corresponding LC-MS 

TICs as [M+H]+ ions with an 865.25 m/z and as higher intensity [M+2H]2+ ions of the same 

nominal mass. Upon MS/MS, the different isomers’ primary bis(GSH)-MDI products 

exhibited similar CID-fragmentation patterns, including a daughter ion (607 m/z) that 

differentiates S,S’ vs. potential S,N’-or N,N’-linked conjugates. The primary bis(GSH)-MDI 

products of 2,4’ MDI have a slightly longer retention time than those for 2,2’ MDI, but a 

slightly shorter retention time than those of 4,4’ MDI under reverse phase chromatography 

conditions on a C18 column. Bis(GSH)-MDI reaction products that form following longer 

reaction times (2 hr) exhibit multiple retention times, which may reflect different 

conformations of the same molecule or intramolecular (S-N) rearrangements (as mentioned 

in Section 3C and below).

Cyclized mono(GSH)-MDI conjugates (Figure 8) are possible if GSH’s amino terminus (γ-

glu) and its free thiol (side chain of cysteine) both react with a single MDI. Molecules with 

these properties are distinguishable in LC-MS TICs and BPCs as [M+H]+ ions possessing a 

558.17 m/z and distinct CID fragmentation pattern upon MS/MS, as previously described 

[19]. These conjugates form to varying degrees with 2,2’, 2,4’ and 4,4’ MDI, have longer 

retention times than bis(GSH)-MDI, and may elute at multiple retention times under the 

described reverse phase LC-MS conditions. The biologic relevance of cyclized mono(GSH)-

MDI vs. bis(GSH)-MDI is unknown. However, if cyclization provides stability, as shown for 

some biologically active peptides [29], it could reduce transcarbamylating potential and 

thus, lower antigenicity and toxicity.

The present report focuses on soluble MDI-GSH reaction products that were quantitatively 

most abundant, based on UV-light absorbance, however additional products were also 

present. A precipitate was observed in longer (2 hour) reactions of MDI with GSH solutions, 

possibly polyureas, as previously described for MDI in aqueous phase [30]. The precipitate 

was insoluble in water or organic solvents and thus, could not be analysed by LC-MS, but 

may be characterized in future studies using solid state analytical methods (FTIR, NMR). 

MDI-GSH reactions also contained low levels of GSH-conjugated to partially hydrolyzed 

MDI (GSH-MDI*NH2) not detectable based on UV-light absorbance, but readily apparent in 

LC-MS TICs, exclusively with 2,4’ and 4,4’, but not 2,2’ MDI (see figure 14). In contrast, 

complete hydrolysis products of 2,2’, 2,4’ and 4,4’ MDI were below the limit of detection 

(0.03 μM; e.g. ≤ 0.001% of starting material) defined using purified methylene diamine 

isomer standards (see supplemental materials, figure 15 and Supplemental Methods).

The potential derivation of mono(GSH)-MDI (in cyclized form, or containing partially 

hydrolysed MDI) via intra-or inter-molecular rearrangement of bis(GSH)-MDI (vs. direct 

reactivity of GSH with MDI) is a provocative hypothesis suggested by the order of product 

formation in this study (e.g. mono(GSH)-MDI*NH2 observed only at the latest time points, 
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and cyclized forms increasing over time). The finding are consistent with prior studies on 

4,4’ MDI by Reisser., et al. [16], which suggest dynamic formation of mono(GSH)-MDI 

secondary to bis(GSH)-MDI formation. Further studies with purified bis(GSH)-MDI 

prepared with different MDI isomers should yield more definitive insight into the temporal 

order of bis vs. mono GSH-MDI reaction product formation.

The present data should be interpreted with recognition of the studies strengths and 

weakness. The strengths of the study include the precise methodology for separation of 

reaction products and determination of their mass, availability of purified MDI isomers, and 

the controlled in vitro study design. Conversely, our reductionist in vitro system possesses 

recognizable limitations towards understanding complex interactions that may occur in vivo. 

While we replicated normal body pH, temperature and relative ratios of reactants and 

organic solvent, our in vitro reactions didn’t include a multitude of other factors in the 

airway microenvironment (e.g. surfactant, proteins, GSH-dependent enzymes) that may 

influence MDI reactivity in vivo. Nonetheless, together with prior reports on other 

diisocyanates [17,18,20,31,32], the present data support the concept that GSH in airway 

fluid represents a likely target for 2,2’ and 2,4’, as well as the 4,4’ isomer of MDI.

Conclusion

In summary, we demonstrate similarities and differences in the reactivity of different 

isomers of MDI with GSH, a major anti-oxidant of the lower airways. The three MDI 

isomers studied (2,2’, 2,4’ and 4,4’) all react rapidly with GSH, forming bis(GSH)-MDI 

conjugates within minutes. Following longer reaction times (10 minutes to 2 hours) 2,2’ and 

2,4’ MDI form greater amounts of cyclized mono(GSH)-MDI compared to 4,4’-MDI. 

Further studies will be required to determine if similar GSH reactivity with different MDI 

isomers occurs in the lower airways of exposed workers, and if so, the implications with 

respect to MDI toxicity and allergenicity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CID Collision Induced Dissociation

EIC Extracted Ion Chromatogram

GSH Glutathione in Reduced State

GSSG Glutathione in Oxidized State

MDI Methylene Diphenyl-Diisocyanate

TIC Total Ion Chromatogram
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Figure 1. 
Three different isomers of MDI.

Wisnewski et al. Page 10

EC Pharmacol Toxicol. Author manuscript; available in PMC 2019 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Primary reaction product of glutathione with different isomers of MDI. Left: LC-MS TIC’s 

of reactions of glutathione without MDI (A), or with 2,2’ (B), 2,4’ (C) or 4,4’ (D) MDI for 1 

minute. Y-axis represents ion intensity and X-axis represents LC retention time in minutes. 

Right: MS of products (Y-axis = ion intensity and X-axis depicts m/z) with LC retention 

times shown by the arrows in Panels B, C, and D are shown in Panels E, F, and G 

respectively for GSH with 2,2’, 2,4’ and 4,4’ MDI. GSH and GSSG represent glutathione in 

its reduced and oxidized states respectively, while cys-gly, a high intensity ion, is a minor 

contaminant of GSH.
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Figure 3. 
MS/MS analysis of new 865 m/z [M+H]+ product of different MDI isomers with GSH. The 

major new [M+H]+ ion with an 865 m/z was subjected to LC-MS/MS. Fragmented daughter 

ions are shown from the major new 865 m/z [M+H]+ parent ion observed in reactions of 

GSH with 2,2’ MDI (Panel A) or 2,4’ MDI (Panel B). The Y-axis reflects ion intensity and 

the X-axis depicts m/z. Daughter ions detailed in the text are highlighted by arrows. 

Comparison with 4,4’ MDI reactions are shown in Fig. 6.
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Figure 4. 
Proposed chemical structures for bis(GSH)-MDI reaction products formed with 2,2’ or 2,4’ 

MDI. The primary reaction products 2,2’ and 2,4’ MDI form with GSH are modeled based 

on the 865.25 m/z of the parent molecule and its CID fragmentation pattern during LC-

MS/MS shown in figure 3. Theoretical chemical formulas and exact mass provided beneath 

the structures are the same for both compounds.
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Figure 5. 
Predicted MS/MS CID fragments of bis(GSH)-MDI.
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Figure 6. 
MS/MS analysis of 865 m/z [M+H]+ product of GSH with different MDI isomers: 2,2’ (A), 

2,4’ (B), 4,4’ (C).
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Figure 7. 
LC-UV light chromatograms of GSH reaction products with different MDI isomers 

following 1, 3, and 6 minute reactions. A. Entire LC-UV (A210) chromatogram, B. Limited 

region of the LC-UV (A210) chromatogram, and C. Limited region of the LC-UV (A254) 

chromatogram highlighting time frame (~1.9 to 2.8 min) when bis(GSH)-MDI elutes. 

Samples were analyzed following GSH reactivity without MDI (blue), or with 2,2’ (green), 

2,4’ (red), or 4,4’ (black) MDI. Y-axis represents UV light absorbance and X-axis represents 

LC retention time in minutes. Samples following 1, 3 and 6 minutes are shown as labeled.
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Figure 8. 
Differences between MDI isomers following extended reaction times with GSH. The LC-

UV (A210) chromatograms are shown for reactions of GSH with 2,2’ (A), 2,4’ (B) or 4,4’ 

(C) MDI for 10 minutes (top row) or 2 hr (bottom row). Peaks with [M+H]+ ions that 

possess m/z’s corresponding to bis (865 m/z) or mono(GSH)-MDI (558 m/z) reaction 

products are highlighted. *Note 1 peak for mono(GSH)-MDI from 2,2’ MDI, two peaks for 

mono(GSH)-MDI from 2,4’ MDI, and much lower level dual peaks for mono(GSH)-MDI 

with 4,4’ MDI.
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Figure 9. 
LC-MS and MS/MS analysis of new 558 m/z [M+H]+ product formed when GSH reacts 

with 2,2’ and 2,4’ MDI. LC-MS analyses of the major new [M+H]+ ions in A210 

chromatograms are shown on the left for reactions of GSH with 2,2’ MDI (A) and for two 

different peaks formed with 2,4’ MDI (B longer retention time and C shorter retention time). 

During LC-MS/MS, the major reaction products with the 558 m/z [M+H]+ (e.g. parent ions) 

from Panels A - C yielded the corresponding daughter fragments shown in Panels D though 

F respectively, and detailed further in Figure 10. Comparison of the mono(GSH)-MDI 558 

m/z [M+H]+ ions from 2,2’ and 2,4’ vs. 4,4’ MDI (in head-to-head experiments) are shown 

in Figure 12.
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Figure 10. 
Predicted MS/MS CID fragments of mono(GSH)-MDI.
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Figure 11. 
Proposed chemical structures for mono(GSH)-MDI reaction products with a 558 m/z [M+H]

+. The major GSH reaction products that form following extended reaction times (10 

minutes to 2 hours) with 2,2’ and 2,4’ MDI are modeled based on LC-MS/MS CID 

fragmentation patterns shown in Figure 9. Note 2 chemically distinct reaction products are 

proposed for 2,4’ MDI depending upon which N=C=O group (ortho vs. para position) is 

bound to GSH’s NH2 vs. SH moiety. Theoretical chemical formula and exact mass provided 

beneath structures are the same for each compound.
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Figure 12. 
MS/MS analysis of 558 m/z [M+H]+ product of different MDI isomers with GSH. During 

LC-MS/MS, upon CID@30.5eV the 558 m/z parent ions yield the following spectra if 

generated from 2,2’ MDI (Panel A), 2,4’ MDI, Panel B major peak (longer retention), Panel 

C minor peak (shorter retention time), and 4,4’ MDI (Panels D and E, later and earlier 

eluting peaks respectively).
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Figure 13. 
MS/MS comparison of peaks with different retention times but identical 865.25 m/z in 

reactions of 2,4’ MDI with GSH. Fol-lowing 2 hr reaction of 2,4’ MDI with GSH, two 

prominent peaks in the A210 chromatogram were observed with the same (865.25) m/z. 

MS/MS analysis of the 865 m/z [M+H]+ ion with the longer retention time, appearing only 

at the later time points is shown in Panel A and contrasted the CID of the 865 m/z [M+H]+ 

ion with the shorter retention time appearing at the earliest time points. Note the 380.125 

m/z daughter ion that would arise as a γ-glu-MDI fragment from an N-linked MDI 

conjugate, as well as the 607 m/z fragment indicative of S,S’-linked bis(GSH)-MDI, 

suggesting the possibility of mixed reaction products eluting with the same retention time, or 

potential on column rearrangement.
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Figure 14. 
LC-MS TIC of GSH reaction products following extended (2hr) reaction time with different 

MDI isomers. (A) Reactions performed with 2,2’ MDI, (B) Reactions performed with 2,4’ 

MDI, (C) Reactions performed with 4,4’ MDI. Solid thick blue line represents samples 

without MDI (control), while thin red line depicts signal from samples with different MDI 

isomer. Note the [M+H]+ ion with the 532 m/z consistent with previously described 

mono(GSH)-MDI*NH2, a conjugate of GSH with partially hydrolyzed MDI (amine 

terminated), as previously described with 4,4’ MDI [19, 21], is present in reactions with 4,4’ 

and 2,4’ MDI but not 2,2’ MDI.
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